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Abstract This paper presents a new approach to han-
dle the problem of energy control of an n-degrees-
of-freedom nonhomogeneous Toda lattice with fixed–
fixed and fixed–free boundary conditions. The energy
control problem is examined froman analytical dynam-
ics perspective, and the theory of constrained motion is
used to recast the energy control requirements on the
Toda lattice as constraints on the mechanical system.
No linearizations and/or approximations of the nonlin-
ear dynamical system are made, and no a priori struc-
ture is imposed on the nature of the controller. Given
the subset of masses at which control is to be applied,
the fundamental equation of mechanics is employed
to determine explicit closed-form expressions for the
nonlinear control forces. The control provides global
asymptotic convergence to any desired nonzero energy
state provided that the first mass, or the last mass, or
alternatively any two consecutive masses of the lat-
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tice are included in the subset of masses that are con-
trolled. To illustrate the ease, simplicity, and efficacy
with which the control methodology can be applied,
numerical simulations involving a 101-mass Toda lat-
tice are presented with control applied at various mass
locations.

Keywords Fermi–Pasta–Ulam problem · Nonhomo-
geneous Toda chains · Energy control · Fundamental
equation · Closed-form global asymptotic control ·
Actuator locations · Solitons

1 Introduction

Equipartition of energy in nonlinear lattices (or bet-
ter known as the “FPU paradox”) is a problem in
nonlinear science that has mystified scientists since
the seminal work done by Fermi, Pasta, and Ulam
(FPU) in 1955 [1]. FPU considered a homogeneous,
one-dimensional chain of masses wherein the nearest-
neighboring masses were coupled using identical non-
linear spring elements. Instead of analyzing the detailed
response of each of the masses in the nonlinear lattice,
FPU concentrated their efforts on studying the total
energy in the lattice. When excited in the lowest mode,
the energy, instead of flowing from one mode of the
system to another and eventually reaching a state of
statistical equilibrium, kept periodically reverting back
to the initialmode that they started it in, contrary to their
expectations. Over fifty years of intensive research to
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resolve this paradox has led to numerous discoveries
and opened many new avenues [2,3]. To date, the FPU
problem is still an active area of research, and there are
many questions related to its significance for science
that still remain unanswered [4].

Motivated by the FPU paradox, in the 1960s,
Toda [5] found analytical solutions to a homoge-
neous nonlinear lattice comprising of exponential
spring elements, which is similar in nature to the
FPU lattice. This nonlinear lattice is referred to as the
“Toda Lattice” in the literature. Subsequently, in the
1970s, Ford [6], Henon [7], and Flaschka [8] indepen-
dently established that the Toda lattice is an exam-
ple of a completely integrable Hamiltonian system.
But perhaps the most interesting aspect of Toda lat-
tices is the fact that they admit multiple soliton solu-
tions [5]. Besides their obvious importance in theo-
retical physics, Toda lattices also find many practi-
cal engineering applications primarily due to the dis-
parate nature of the tensile and compressive forces of
its elastic spring elements, which arises from an asym-
metry in its potential. In nature, it is often difficult
to find a mechanical system that has perfectly linear
spring elements. One often finds that the spring ele-
ments are stronger in tension and weaker under com-
pression, or vice versa. Many elastic materials also
exhibit this asymmetrical behavior under tensile and
compressive loading. For example, flexible cables in
suspension bridges are stronger under tensile forces
and weaker under compressive forces, and Toda lat-
tices can potentially be used in the modeling of such
systems.

The main focus of the present study is to control the
energy of a nonhomogeneous Toda lattice and bring
it to a desired energy level. Control of Toda lattices
has received sparse attention in the literature. Puta and
Tudoran address the problem of controllability of a
homogeneous, n-degrees-of-freedom Toda lattice and
find that the lattice is controllable since it satisfies the
Lie algebra rank condition [9]. Schmidt et al. studied
the observability properties of an n-periodic homoge-
neous Toda lattice and showed that the lattice is glob-
ally observable for any number of masses in the lat-
tice by using a single momentum and the exponential
of the distance between that mass and a neighboring
mass as output [10]. Palamakumbura et al. consider
an n-periodic homogeneous Toda lattice in terms of
Flaschka variables and use full-state feedback as well
as local feedback control to drive the solution of the

controlled system to any solution of the uncontrolled
system such as solitons and phonons [11].

Nearly all the research done to date in this field has
been focused on latticeswith identicalmasses and iden-
tical spring elements (i.e., homogeneous lattices).Work
on nonhomogeneous lattices is indeed scant and seems
limited to two-degrees-of-freedom systems [12–14].
Analytical results on both the dynamics and the con-
trol of large-amplitude nonlinear motion of nonhomo-
geneous lattices are, to the best of the authors’ knowl-
edge, nonexistent. Nevertheless, nonhomogeneous lat-
tices are more representative of real-life behavior when
compared to their idealizedhomogeneous counterparts.
And, therefore, in this study, we consider an n-degrees-
of-freedom nonhomogeneous Toda lattice with fixed–
fixed and fixed–free boundary conditions. The prob-
lem of energy control of Toda lattices with fixed–fixed
ends has been previously attempted by Polushin [15],
but again this work deals with homogeneous lattices.
Besides dealing with a nonhomogeneous Toda lattice,
the control approach developed here is widely different
from that used in [11] and [15].

More specifically, this paper distinguishes itself
from previous work on the energy control of Toda lat-
tices in four key ways—firstly, the Toda lattice under
consideration is nonhomogeneous (i.e., the lattice is
made up of dissimilar masses and dissimilar spring
elements along its length) as compared to the homoge-
neous lattice considered in nearly all the current liter-
ature. Both fixed–fixed and fixed–free boundary con-
ditions are studied. Secondly, the problem of energy
control of Toda lattices is approached from an ana-
lytical dynamics perspective, and the theory of con-
strained motion is used to recast the control require-
ments as constraints on the dynamical system. The fun-
damental equation of mechanics [16] is employed to
obtain a closed-form expression of the explicit nonlin-
ear control force. Thirdly, the methodology developed
herein allows us to explicitly determine the control
forces needed to be applied to any arbitrarily chosen
subset of masses that are designated to have control
inputs and still achieve global asymptotic convergence
to any desired nonzero energy state provided that the
first mass, or the last mass, or alternatively any two
consecutive masses of the nonhomogeneous lattice are
included in this subset. Lastly, once the energy of the
system is brought to its desired value, the control forces
automatically terminate, and the conservative nature of
the ensuing Hamiltonian dynamics is utilized to main-
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Fig. 1 Finite degrees-of-freedom nonhomogeneous Toda lattice

tain the system’s energy at the desired level for all future
time.

It is interesting to note that although it is extremely
difficult to understand the dynamical response of the
nonhomogeneous Toda lattice and obtain anything
nearing general closed-form analytical solutions for
the response—a consequence of which is the virtu-
ally nonexistent literature on the subject—its energy
control, however, can be done relatively easily, and
the necessary control forces can be obtained in closed
form. This seems to beg the question:HasNature some-
how intentionally made it easier for us to control the
energy of nonlinear systems rather than to determine
their exact nonlinear behavior?

The paper is organized as follows. In Sect. 2, an
introduction to the physics of the n-degrees-of-freedom
nonhomogeneous Toda lattice is presented. The con-
strained motion approach is briefly recalled in Sect.
3. In Sect. 4, the energy control problem in Toda lat-
tices is formulated, and a closed-form expression for
the nonlinear control force is derived. In Sect. 5, the
invariance principle [17] is used to derive sufficient
conditions for the placement of the actuators, so that the
control force obtained in Sect. 4 gives us global asymp-
totic convergence to any desired nonzero energy state.
Finally, in Sect. 6, numerical simulations involving a
101-mass Toda lattice with fixed–fixed and fixed–free
boundary conditions are presented that illustrate the
ease and efficacy with which the control methodology
can be applied. Several of the technical details have
been placed in the Appendices in order to maintain the
flow of thought.

2 Physics of the Toda lattice

The Toda lattice is a simple model for a nonlinear one-
dimensional crystal that describes themotion of a chain
of particles with exponential interactions between the
nearest-neighboring elements (see Fig. 1) [5].

Consider a single-degree-of-freedom (SDOF)
spring-mass system with Toda spring stiffness that is

Fig. 2 Exponential potential ao, bo > 0. (Color figure online)

obtained by setting mi = 0 ∀ i = 2, 3, . . . , n + 1
(see Fig. 1). The expression for the nonlinear potential
(Fig. 2) of the Toda spring is given by the smooth and
continuously differentiable function

uo(q1) = ao
bo

eboq1 − aoq1 − ao
bo

, ao > 0, bo > 0,

(2.1)

where the displacement, q1, of the mass, m1, is mea-
sured from its equilibrium position in an inertial frame
of reference. A constant (−ao/bo) has been included in
the expression of the potential to ensure that uo(0) = 0.
The potential has a single stationary point at q1 = 0 and
since u′′

o(0) = aobo > 0, q1 = 0 is a global minimum
of (2.1). Further, since u′

o = ao(eboq1 −1) > 0 ∀ q1 >

0 and u′
o < 0 ∀ q1 < 0, uo is strictly increasing in the

interval 0 < q1 < ∞ and is strictly decreasing in the
interval −∞ < q1 < 0. Consequently, the potential
function is strictly radially increasing (see Fig. 2) and
hence radially unbounded [18]. It is also strictly posi-
tive definite with uo(0) = 0 and uo(q1) > 0 ∀ q1 �= 0.
Further, since u′′

o(q1) = aoboeboq1 > 0 ∀ q1, the
potential of the Toda spring (2.1) is a strictly convex
function. The exponential Toda spring force Fs(q) for
this SDOF spring-mass system is given by
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Fig. 3 Spring force of the Toda lattice. (Color figure online)

Fs(q1) = −Frestoring(q1) = ∂uo(q1)

∂q1
= ao

(
eboq1 − 1

)

(2.2)

For sufficiently small q1, the spring force is approx-
imately linear. However, the nonlinearity of the force
gains prominence as q1 increases. Also, a larger force is
required to stretch the spring by a unit distance than is
required to compress it (see Fig. 3). Hence, the Toda lat-
tice considered in this paper possesses spring elements
that are stronger in tension than in compression. Such
systems arise frequently in structural subsystems such
as the stringers in suspension bridges. In the present
study, although we focus our attention on a Toda spring
that is strong in tension and weak under compression
(a > 0, b > 0), the theory developed herein is also,
in general, applicable to a Toda spring that is weak in
tension and strong under compression (a < 0, b < 0).

2.1 Equations of motion of the Toda lattice

Consider an n-degrees-of-freedom (NDOF) nonhomo-
geneous undamped Toda lattice (as shown in Fig. 1),
in which the mass at the i th location is denoted by mi .
The kinetic energy of this lattice can be written as

T (q̇) =
n+1∑
i=1

1

2
mi q̇

2
i , (2.3)

where q̇i denotes the velocity of the i th mass in the
lattice. The potential energy of the lattice is com-
posed of exponential interactions between the nearest-
neighboring elements and is defined by

U (q) =
n∑

i=0

ui (qi+1 − qi )

=
n∑

i=0

[
ai
bi
ebi (qi+1−qi ) − ai (qi+1 − qi ) − ai

bi

]
,

(2.4)

where ai , bi > 0 denote the spring constants of the
i th spring element in the lattice and qo ≡ 0 because
the left end of the lattice is always fixed (see Fig. 1).
The total energy H of the Toda lattice is a smooth and
continuously differentiable function and is given by

H(q, q̇) = T (q̇) +U (q) =
n+1∑
i=1

[
1

2
mi q̇

2
i

]

+
n∑

i=0

[
ai
bi
ebi (qi+1−qi ) − ai (qi+1 − qi ) − ai

bi

]
,

(2.5)

The energy H is a positive definite function with
H(0, 0) = 0, and H(q, q̇) > 0 for all q, q̇ �= 0 (see
Appendix 1). The equations of motion of the nonho-
mogeneous n-degrees-of-freedom (NDOF) Toda lat-
tice can be derived using Newton’s laws of motion and
are given by

mi q̈i =ai
[
ebi (qi+1 − qi )−1

]
−ai−1

[
ebi−1(qi − qi−1)−1

]
;

i = 1, 2, . . . , n + 1, (2.6)

where qn+1 ≡ 0 for an n-mass lattice with fixed–fixed
boundary conditions and an = bn = 0 for an n-mass
lattice with fixed–free boundary conditions as there is
no spring between the masses mn and mn+1 (see Fig.
1). When Eq. (2.6) is expressed in matrix form, the
equation of motion of a nonhomogeneous NDOF Toda
lattice with fixed–fixed boundary conditions is given
by M q̈ = F(q), which when written explicitly yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . mi

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q̈1
...

q̈i
...

q̈n

⎤
⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
[
eb1(q2−q1) − 1

]
− a0

[
eb0(q1) − 1

]

...

ai
[
ebi (qi+1−qi ) − 1

]
− ai−1

[
ebi−1(qi−qi−1) − 1

]

...

an
[
ebn(−qn) − 1

]
− an−1

[
ebn−1(qn−qn−1) − 1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.7)

where the n-by-n mass matrix M is diagonal, and the
column vector of generalized “given” forces F is given
by the right-hand side of Eq. (2.7). Furthermore, by
setting an = bn = 0 in Eq. (2.7), we obtain the matrix
representation for the equation of motion of a nonho-
mogeneous NDOF Toda lattice with fixed–free bound-
ary conditions.

While the analysis here is restricted to spring forces
whose potentials are given by Eq. (2.1), what follows
would also be applicable to systems in which the spring
forces have polynomial nonlinearities (as often found
in engineering systems) provided their potentials sat-
isfy certain properties. Furthermore, we assume that
there is no damping since the inclusion of damping
adds complexities that go beyond the current scope of
this paper.

3 Constrained motion approach and the
fundamental equation of mechanics

In this paper, we use the fundamental equation of
mechanics [19–26] to derive the constrained (con-
trolled) equations of motion of the Toda lattice and
thus to obtain the explicit nonlinear control forces that
are required to achieve the desired energy stabilization.
The fundamental equation is known for the relative
ease with which the constrained equations of motion
of a complex multibody system can be derived in com-
parison with other classical methods. A report on the
numerical efficiency of this formulation in multibody
dynamics has been presented by de Falco [23].

Consider an unconstrained [19], discrete dynamic
system of n particles (similar to our NDOF Toda lattice
with appropriate boundary conditions as described in
Sect. 2). The equations of motion of this unconstrained
system at a certain instant of time t can bewritten down
using Newton’s laws or Lagrange’s method as

M(q, t) q̈ = F(q, q̇, t), q(0) = qo, q̇(0) = q̇o,

(3.1)

where M is the n-by-n symmetric, positive definite
mass matrix, q is the n-vector of generalized coordi-
nates of the system, and F is the n-vector of general-
ized “given” forces acting on the unconstrained system.
The acceleration a of the unconstrained system (3.1) is
given by

a(q, q̇, t) = [M(q, t)]−1 F(q, q̇, t). (3.2)

Consider now that we impose a set of m constraints
on the unconstrained system (3.1), all of which may or
may not be independent (i.e., some of the constraints
may be the combination of others) [25].

φi (q, q̇, t) = 0, i = 1, 2, 3 . . . m. (3.3)

The initial conditions stated in (3.1) are assumed to sat-
isfy these constraint equations.However, in somecases,
it may not be possible to initialize the unconstrained
system from points in the phase space where the con-
straints are satisfied. Thus, instead of considering the
existing set ofm constraints described by Eq. (3.3), we
modify these constraint equations as follows [20].

�i (q, q̇, q̈, t) = φ̇i + βφi = 0, i = 1, 2, 3 . . . m,

(3.4)

where β(q, q̇) > 0 is chosen such that the system of
equations (3.4) has an equilibrium point described by
(3.3), and that this equilibrium point is stable. This set
of m modified constraints can now be expressed in the
general constraint matrix form as

A(q, q̇, t) q̈ = b(q, q̇, t), (3.5)

where A is an m-by-n constraint matrix of rank r (i.e.,
r out of the m constraint equations are independent),
while b is a column vector withm entries. The presence
of constraints causes the acceleration of the constrained
system to deviate from its unconstrained acceleration
at every instant of time t . This deviation in the accel-
eration of the constrained system is brought about by a
force FC , called the constraint force, which is exerted
on the system by virtue of the fact that the uncon-
strained system must now further satisfy an additional
set of constraints. The explicit equations of motion of
the constrained system can now be written down as

M(q, t) q̈ = F(q, q̇, t) + FC (q, q̇, t), (3.6)

where FC is the set of additional forces that arise by
virtue of the application of the m constraints. One can
also envision FC to be the set of control forces that
are required to be applied to the uncontrolled open-
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loop system (unconstrained system) to obtain the con-
trolled closed-loop system (constrained system) [21].
Udwadia and Kalaba [19,22,26] proposed the follow-
ing closed-form expression for the control (constraint)
force

FC (q, q̇, t) = M1/2(AM−1/2)+(b − Aa), (3.7)

where (AM−1/2)+ denotes theMoore–Penrose inverse
of the matrix (AM−1/2). Equation (3.6) along with
(3.7) is referred to as the “fundamental equation of
mechanics.” Equation (3.7) provides the optimal set
of control forces that minimize the control cost given
by J (t) = [FC ]T M−1[FC ] at each instant of time
while causing the constraints to be exactly satisfied
[24]. Once thematricesM, F, A, b are obtained from the
description of the unconstrained system and the con-
straint equations, the constraint (control) force can be
readily calculated using Eq. (3.7). This often greatly
reduces the conceptualization effort when compared
with other classical methods.

The generality of this formulation makes it applica-
ble in many diverse areas of mechanics. For example,
see Udwadia and Han [27], and Mylapilli [28] for an
application of this formulation to the problemofmotion
synchronization of multiple coupled (or uncoupled)
chaotic gyroscopes. Further applications of this for-
mulation to rotational dynamics, satellite control, and
uncertain mechanical systems can be found in Refs.
[29,30] and [31], respectively.

The papers in Refs. [27–31] primarily deal with the
use of the fundamental equation of mechanics applied
to the full-state control of nonlinear, nonautonomous
systems that have a relatively small number of degrees
of freedom. This paper deals with the use of Lyapunov
stability theory in conjunction with the fundamental
equation of mechanics to investigate highly underactu-
ated, global asymptotic energy control of autonomous
systems that can have a very large number of degrees
of freedom (see illustrative examples in Sect. 6).

4 Solution to the energy control problem

Consider a nonhomogeneous, n-mass Toda lattice with
energy H > 0 and appropriate boundary conditions
(see Eqs. 2.6 and 2.7), which we henceforth refer to
as the unconstrained Toda lattice. The energy control
problem for this unconstrained system is formulated as
follows.

Given a set of k masses selected from among the
n masses of the lattice, find the explicit control forces
that need to be applied to this set of k masses such that
the total energy of the Toda lattice approaches a given
positive value H∗ as t → +∞
i.e., H(q(t), q̇(t)) → H∗ as t → +∞, H∗ > 0

(4.1)

Although we assume at this stage that the locations of
these k actuators (where 1 ≤ k ≤ n) can be arbitrarily
selected from among the n masses in the lattice, we
will later show that in order to have global asymptotic
convergence to any given nonzero desired energy state
H∗, the set of actuator locations need to satisfy certain
conditionswhen k < n and the system is underactuated
(see Sect. 5.2).

In this paper, the energy control problem (4.1) is
approached from a constrained motion perspective,
which comprises of three vital steps [19]. The first step
involves the derivation of the equations ofmotion of the
unconstrained system. For a nonhomogeneous NDOF
Toda lattice, this has already been discussed in Sect. 2.
The second step involves the formulation of the con-
straint equations (see Sect. 4.1), and the last step deals
with the use of the fundamental equation (Eqs. 3.6 and
3.7) to obtain the constrained equations of motion of
the Toda lattice (see Sect. 4.2). In the process, we also
find a closed-form expression for the explicit nonlin-
ear control force that is required to be applied to the
uncontrolled system (2.6) to stabilize the energy of the
Toda lattice at the desired level.

4.1 Formulation of the energy constraints

Consider an unconstrained, nonhomogeneous NDOF
Toda lattice with appropriate boundary conditions. The
unconstrained acceleration a(q) of theToda latticewith
fixed–fixed ends can be computed as

a(q) = M−1 F(q)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
m1

[
eb1(q2−q1)−1

] − ao
m1

[
ebo(q1)−1

]
...

ai
mi

[
ebi (qi+1−qi )−1

] − ai−1
mi

[
ebi−1(qi−qi−1)−1

]
...

an
mn

[
ebn(−qn)−1

] − an−1
mn

[
ebn−1(qn−qn−1) − 1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.2)
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The unconstrained acceleration of the fixed–free Toda
lattice can be similarly obtained by setting an = bn =
0 in Eq. (4.2). Suppose now that out of these n masses,
we apply control inputs to k arbitrarily selectedmasses,
where 1 ≤ k ≤ n. The locations of these k masses
where a control input is applied are denoted by the
ordered set

SC = {i1, i2, i3, . . . ik} , (4.3)

where, with no loss of generality, we order these loca-
tions along the Toda lattice, so that i1 < i2 < i3 <

. . . < ik . Similarly, the set of (n − k) masses at which
no control is applied is given by the complement of the
set SC which we denote by

SN = ScC = {1, 2, 3 . . . n} \ {i1, i2, i3, . . . ik}
= { j1, j2, j3, . . . jn−k} , (4.4)

where again j1 < j2 < j3 < . . . < jn−k . It is also con-
venient to represent this information in terms of matri-
ces. The following matrices are defined to simplify the
notation.

(1) The mass matrices associated with the set of con-
trolled and uncontrolled masses are represented
by MC = diag

(
mi1, mi2 , mi3, . . . mik

)
and

MN = diag
(
m j1, m j2 , m j3 , . . . m jn−k

)
, respec-

tively.

(2) The displacements associated with the set of con-
trolled and uncontrolled masses are represented

by the column vectors qC = [
qi1 qi2 . . . qik

]T
and qN = [

q j1 q j2 . . . q jn−k

]T
, respectively.

(3) A k-by-n “control selection matrix,”C , is defined
such that every element of its gth row (1 ≤ g ≤ k)
is zero except for the ig th element (where ig ∈ SC )

which is unity.

(4) Similarly, we define an (n − k)-by-n “no-control
selection matrix,” N , such that every element of
its hth row (1 ≤ h ≤ n − k) is zero except for the
jh th element (where jh ∈ SN ) which is unity.

(5) We note that the n-by-n diagonal matrix IC =
CTC has zeroes all along its diagonal except for
the (ig, ig) elements which are unity (ig ∈ SC ).

(6) Similarly, the n-by-n diagonalmatrix IN = NT N
has zeroes all along its diagonal except for the
( jh, jh) elements which are unity ( jh ∈ SN ).

While dealing with the energy control problem, we
interpret the energy requirements as an energy con-
straint on the unconstrained Toda lattice (2.6).

1. Constraint of “energy stabilization” Using Eq.
(2.5), the energy stabilization constraint is given by

φ(q, q̇) = H(q, q̇) − H∗

=
(
1

2
q̇T Mq̇ +U (q)

)
− H∗ = 0, (4.5)

where H(q, q̇) is rewritten in matrix-vector notation,
and H∗ denotes the given nonzero desired energy
state of the system. Equation (4.5) resembles constraint
equation (3.3) and therefore needs to be differentiated
once with respect to time, so that it can be expressed in
the general form of Eq. (3.5). Further, a modified con-
straint equation [20] is generated by introducing β > 0
(see Eq. 3.4), so that the Toda lattice can be initiated
from any arbitrary initial energy state. The modified
energy stabilization constraint can now be expressed
as

�(q, q̇, q̈) = d

dt
(φ) + βφ = 0

= d

dt

[(
1

2
q̇T Mq̇ +U (q)

)
− H∗

]

+β
(
H − H∗) = 0

= 1

2
q̇T

(
M+MT

) dq̇

dt
+

(
dq

dt

)T (
∂U

∂q

)

+β
(
H − H∗) = 0

= q̇T Mq̈ − q̇T F + β
(
H − H∗) = 0

(4.6)

2. Constraint of “no-control” In addition to the
energy stabilization constraint, a constraint of
“no-control” is imposed on all the masses that belong
to the set SN that are left unactuated. Since no control
is being applied to these masses, the prevailing uncon-
strainedmotion of thesemasses (2.6) can themselves be
considered as constraints. Thus, this set of (n−k) “no-
control” constraints can be described in matrix form
as

N (Mq̈ − F) = 0. (4.7)

When the constraints described by Eqs. (4.6) and (4.7)
are expressed in the general constraint matrix form (see
Eq. 3.5), this leads to an (n − k + 1)-by-n constraint
matrix A given by

A =
[
q̇T M
NM

]
=

[
q̇T

N

]
M, (4.8)

and an (n – k + 1)-sized column vector b given by
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b =
[
q̇TF − β (H − H∗)
NF

]
. (4.9)

4.2 Equations of motion of the constrained Toda
lattice system

Once the matrices M, F, a, A, and b are known for
an NDOF Toda lattice, the explicit nonlinear control
force FC can be computed using Eq. (3.7). A detailed
derivation of the control force canbe found inAppendix
2. The control force in closed form is given by

FC (q, q̇) = −β (H(q, q̇) − H∗)
q̇TC MCq̇C

ICMq̇, (4.10)

where q̇TC MCq̇C = ∑k
g=1

(
mig q̇

2
ig

)
. The control force

(4.10) possesses a singularity when the velocities of the
set of masses that are controlled are all simultaneously
zero. To avoid this, we choose β as

β (q, q̇) =
(
q̇TC MCq̇C

)
· λ (q, q̇) , (4.11)

where λ (q, q̇) > 0. Moreover, for simplicity, we
choose λ(q, q̇) = λo, where λo is a positive constant
that can be suitably altered to control the rate at which
the system converges to the desired energy state H∗.
With this simplification, the explicit control force is
now given by

FC = −λo
(
H(q, q̇) − H∗) ICMq̇

= − f (q, q̇)ICMq̇. (4.12)

Though it might appear that the control force, which
depends linearly on the momentum of the controlled
masses, resembles a velocity feedback type of control,
the nonlinear gain f (q, q̇) qualitatively changes the
nature of the feedback, as shown later on. The equa-
tions of motion of the controlled (constrained) Toda
lattice with appropriate boundary conditions can now
be written using Eq. (3.6), where the “given” force F
is obtained from the uncontrolled system (see Eqs. 2.6
and 2.7), and the control force (constraint force) FC is
explicitly given by Eq. (4.12).

5 Global asymptotic convergence to the energy
state H∗ in R

2n − {O}

In this section, our aim is to prove that the control
force FC gives us global asymptotic convergence to

any given desired energy state H∗ in R
2n − {O} pro-

vided that the first mass, or the last mass, or alterna-
tively any two consecutive masses of the Toda lattice
are included in the subset of masses that are controlled.
The energy of the uncontrolled system is assumed to
be greater than zero. To acquire insight into the nature
of the control, we first consider a single-degree-of free-
dom (SDOF) spring-mass oscillator with Toda spring
stiffness and later generalize these results to a nonho-
mogeneous NDOF Toda lattice with fixed–fixed (and
fixed–free) boundary conditions. Proofs related to the
NDOF system are derived in detail in the Appendices.

5.1 SDOF spring-mass system with Toda stiffness

Consider a SDOF spring-mass systemwith Toda spring
stiffness as discussed in Sect. 2. The uncontrolled
(unconstrained) equation of motion of this spring-mass
system with unit mass is given by

q̈1 + ao(e
boq1 − 1) = 0,

q1(0) = q(0)
1 , q̇1(0) = q̇(0)

1 , (5.1)

where the initial displacement and the initial velocity
of the system are specified by q(0)

1 and q̇(0)
1 , respec-

tively. Let us represent this SDOF system (5.1) in an
equivalent state-space form:

Ẋ1 = X2,

and Ẋ2 = −ao(e
boX1 − 1), (5.2)

where X1 = q1 and X2 = q̇1. The SDOF system (5.2)
has a single isolated equilibrium point at the origin O,
which is a center [32]. Hence, the phase space of uncon-
trolled system (5.2) is composed of concentric closed
orbits around the origin with each closed orbit denoting
a constant energy level as shown in Fig. 4a.

Consider now that this uncontrolled system (5.1) is
subjected to an energy stabilization constraint (4.6).
The control force can be computed using Eq. (4.12)
and is given by

FC = −λo
(
H(q1, q̇1) − H∗) q̇1, λo > 0 (5.3)

where,

H (q1, q̇1) = 1

2
q̇21 + ao

bo
eboq1 − aoq1 − ao

bo
. (5.4)

The energy H of the SDOF Toda oscillator is posi-
tive definite (see Appendix 1) and radially unbounded
(Appendix 4). Also, H increases monotonically in

123



www.manaraa.com

Energy control of nonhomogeneous Toda lattices 1363

Fig. 4 a 2D phase portrait of the uncontrolled SDOF oscillator
with Toda spring stiffness (ao = 2, bo = 1). b 2D phase por-
trait of the controlled SDOF oscillator with Toda spring stiffness
(ao = 2, bo = 1, λo = 1, H∗ = 8). Two different trajectories
starting from two different initial conditions are shown. (Color
figure online)

every radial direction from the origin. Therefore, any
constant energy curve is a closed orbit in phase space.
With the control force (5.3) at our disposal, the con-
trolled (constrained) equations of motion of the SDOF
Toda oscillator can now be written as

q̈1 + λo
(
H(q1, q̇1) − H∗) q̇1 + ao(e

boq1 − 1) = 0.

(5.5)

Eq. (5.5) resembles the familiar form of a self-excited
nonlinear oscillatorwith a nonlinear damping term sim-
ilar to those found in Van der Pol-type systems. When
H > H∗, the damping in the system is positive, and
the energy of the system is lowered. Conversely, when
H < H∗, the damping is negative, and the energy of
the system is raised. When H = H∗ is attained, the
control force terminates, and the conservative nature
of the lattice is utilized to maintain its energy at H∗ for
all future time.

The equivalent pair of first-order equations for the
constrained system (5.5) is given by

Ẋ1 = X2,

Ẋ2 = −ao(e
boX1 − 1) − λo

(
H(X1, X2) − H∗) X2.

(5.6)

The constrained system (5.6) still possesses a single
isolated equilibrium point at the origin, but it is now
unstable. The introduction of the control force (5.3)
has destroyed the concentric closed orbits of the uncon-
trolled (unconstrained) system (see Fig. 4a) and has led
to the creation of an unstable origin as well as a stable
limit cycle (described by H(X1, X2) = H∗) in the con-
trolled (constrained) system (see Fig. 4b). As shown in
this figure, the controlled system asymptotically tends
to the manifold H = H∗ in the two-dimensional phase
space, and to get to this desired manifold, it can take
one of many different trajectories depending on the ini-
tial conditions of the controlled system and the value
chosen for the parameter λo > 0.

We now investigate whether we can analytically
establish the convergence of all orbits in R

2 − {O} to
the manifold H(X1, X2) = H∗ for the controlled sys-
tem. And to do this, we resort to Lasalle’s invariance
principle [17].

Invariance principle Lasalle’s invariance principle
[17] in Rn is postulated as follows.

Let � be a compact set (� is a subset of D where
D ⊂ R

n) that is positively invariant. Let V : D → R

be a continuously differentiable scalar function such
that V̇ ≤ 0 in � . Let E be the set of all points in �

where V̇ = 0. Let P be the largest invariant set in E.
Then, every solution x(t) starting in � approaches P
as t → ∞.

Consider a continuously differentiable scalar func-
tion V given by

V (X1, X2) = 1

2

(
H(X1, X2) − H∗)2 , H∗ > 0,

(5.7)

defined on the set � described by

� =
{
(X1, X2) ∈ R

2 | ε ≤ H (X1, X2) ≤ c
}

, (5.8)

where 0 < ε < H∗ < c, and H is the energy of the
system described by (5.4). By choosing ε > 0, an open
region around the origin O (X1 = X2 = 0) is excluded
from the set �. Our basic motive in choosing � as in
(5.8) is to establish that the origin O is an unstable fixed
point, and all trajectories in R

2 − {O} asymptotically
converge to the closed periodic orbit H(X1, X2)=H∗.

1. � is compact set A formal proof of this result is
presented in Appendix 4. However, given that constant
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Fig. 5 a Pictorial representation of a typical � set. b scalar
energy error V plotted as a function of phase variables X1 and
X2 (ao = 2, bo = 1, H∗ = 8). (Color figure online)

energy curves of (5.1) form closed orbits in R
2, from

Fig. 5a it is easy to see that the set � is indeed closed
and bounded and therefore compact.

2. � is positively invariant A set W is said to be
positively invariant set if x(0) ∈ W implies x(t) ∈ W
for all t ≥ 0 [33]. Figure 5b shows V plotted as a
function of X1 and X2. We note that the function V has
a positive value everywhere in R

2 (which includes �)
except when H(X1, X2) = H∗,where it is zero. Let us
now evaluate V̇ along the trajectories of the controlled
(constrained) system (5.6) and determine the region in
phase space where V̇ is guaranteed to be nonpositive.

V̇ (X1, X2)

= (
H − H∗) dH

dt

= (
H − H∗) d

dt

{
1

2
X2
2 + ao

bo
eboX1 − aoX1 − ao

bo

}

= (
H − H∗) {

X2 Ẋ2 + ao Ẋ1(e
boX1 − 1)

}

= (
H − H∗)

⎧
⎨
⎩

−ao(eboX1 − 1)X2 − λo
(
H − H∗)

X2
2

+ ao(eboX1 − 1)X2

⎫
⎬
⎭

= − λo
(
H − H∗)2 X2

2 ≤ 0 ∀ R
2 (5.9)

Thus, we find that V̇ is indeed nonpositive throughout
R
2 (which includes the set �). Since V ≥ 0 (5.7) and

V̇ ≤ 0 (5.9) at all points that lie in the set�, we deduce

that the trajectories that enter the set � at t = 0 are
confined to it for all future time. This implies that � is
positively invariant.

3. Set E The set E is defined as consisting of all
points in � where V̇ = 0. From Eq. (5.9), we deduce
that V̇ is zero in the set � when

E =
{
(X1, X2) ∈ R

2 | X2 ≡ 0 ∪ H(X1, X2) ≡ H∗}.

(5.10)

4. Set P The set P is defined to be the union of all
invariant sets within E [34]. The set of all points satis-
fying H(X1, X2) = H∗ is positively invariant because
when H(X1, X2) = H∗ is substituted into the con-
strained equations of motion (5.6), the control force is
zero, and we obtain our unconstrained (uncontrolled)
system which is conservative and for which the energy
remains constant (which in this case is H∗) for all time
t . On the other hand, substituting X2 ≡ 0 (and there-
fore Ẋ2 ≡ 0) in Eq. (5.6), we find that X1 ≡ 0. Thus,
the origin (X1 ≡ X2 ≡ 0) is the only point on the line
X2 = 0 which is invariant, and all other trajectories
originating on the line X2 = 0 move away from it.
However, since the origin (at which H(0, 0) = 0) is
itself excluded from the set �, the set P consists of

P =
{
(X1, X2) ∈ R

2 | H(X1, X2) = H∗, H∗ > 0
}

.

(5.11)

Then, by the invariance principle, every solution x(t)
starting in � approaches P as t → ∞. Thus, we con-
clude that all trajectories in the set� have to eventually
converge to the limit cycle (5.11) as time t tends to infin-
ity. Hence, global asymptotic convergence to the limit
cycle has been established in �. Now, since c (outer
boundary of the set �) can be chosen to be arbitrarily
large and ε (inner boundary of the set � encircling the
origin) can be chosen to be arbitrarily small, all orbits in
R
2 −{O} asymptotically tend to P . Furthermore, since

the open region around the origin can be made arbi-
trarily small through a proper choice of ε, the origin
is an unstable fixed point. This proves that the control
force derived in (5.3) for the case of an SDOF Toda
oscillator (with initial energy Ho > 0) gives us global
asymptotic convergence to any given desired energy
state H∗ in R

2 − {O}. We next proceed to the NDOF
system.
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5.2 NDOF Toda lattice with fixed–fixed (and
fixed–free) boundary conditions

In this section, our aim is to show that for a Toda lattice
with initial energy Ho > 0:

1. The control force FC (Eq. 4.12) gives us global
asymptotic convergence to any given nonzero
desired energy state H∗ provided that the firstmass,
or the last mass, or alternatively any two consecu-
tive masses of the NDOF Toda lattice are included
in the subset of masses that are controlled.

2. The controlled NDOF system (5.12) possesses a
single isolated equilibrium point at the origin O of
the phase space. This is proved in Appendix 3. We
show that this fixed point at the origin is unstable.

LaSalle’s invariance principle helps us in establishing
both these results.

The constrained (controlled) equations of motion
of a nonhomogeneous NDOF Toda lattice with fixed–
fixed (orfixed–free) boundary conditions canbewritten
as

Mq̈ = F − λo
(
H(q, q̇) − H∗) ICMq̇. (5.12)

Similar to the SDOF system, let us consider a continu-
ously differentiable scalar function V as

V (q, q̇) = 1

2

(
H(q, q̇) − H∗)2 , where H∗ > 0,

(5.13)

defined on the set � described by

� =
{
(q, q̇) ∈ R

2n | ε ≤ H(q, q̇) ≤ c
}

, (5.14)

where 0 < ε < H∗ < c. By choosing ε > 0, an open
region around the origin O (prescribed by q ≡ q̇ ≡ 0)
is excluded from the set �. Our objective in choosing
� as in (5.14) is to establish that the origin O is an
unstable fixed point, and all trajectories in R

2n − {O}
asymptotically converge to the compact and invariant
set defined by H(q, q̇) = H∗.Now, to apply the invari-
ance principle, we need to first establish that the set �
is compact and positively invariant in 2n-dimensional
phase space.

1. � is a compact set A detailed derivation of this
result is presented in Appendix 4.

2. � is positively invariant Let us compute V̇ along
the trajectories of the constrained NDOF Toda lattice
(5.12) as shown below.

V̇ (q, q̇) = (
H − H∗) dH

dt

= (
H − H∗)

[
d

dt

(
1

2
q̇T Mq̇ +U (q)

)]

= (
H − H∗) [

q̇T (Mq̈) + q̇T (−F)
]

= (
H−H∗) [

q̇T
(
F−λo

(
H−H∗)CTC M q̇

)
+ q̇T (−F)

]

= −λo
(
H − H∗)2 q̇T CTC M q̇

= −λo
(
H − H∗)2 q̇TC MCq̇C ≤ 0 ∀ R

2n (5.15)

Since V ≥ 0 (Eq. 5.13) and V̇ ≤ 0 (Eq. 5.15) at all
points that lie in the set �, we deduce that the set �

is positively invariant. Note that this result also holds
true if β were to be given by Eq. (4.11) instead.

3. Set E From Eq. (5.15), we deduce that V̇ is zero
in the set � when

E =
{
(q, q̇) ∈ R

2n | q̇C ≡ 0 ∪ H(q, q̇) ≡ H∗} .

(5.16)

4. Set P The set P is defined to be the union of all
invariant sets within E [34]. The set of all points sat-
isfying H(q, q̇) = H∗ is positively invariant because
when H(q, q̇) = H∗ is substituted into the equations of
motion of the controlled lattice (5.12), the control force
is zero, andwe obtain our uncontrolled (unconstrained)
system (2.7) which is conservative and for which the
energy remains constant (which in this case is H∗) for
all time t . Next, we need to ensure that the only invari-
ant set in E(⊆ �) is the set defined by H(q, q̇) = H∗,
so that all trajectories in � are globally attracted to
this set. Thus, we would ideally like the invariant
set(s) satisfying q̇C ≡ 0 to lie outside �. To ensure
this, we need to place the actuators appropriately, so
that

q̇C ≡ 0 only yields q ≡ q̇ ≡ 0, (5.17)

which is invariant, and which does not belong to the set
�. A sufficient condition for (5.17) to occur in NDOF
Toda lattices with fixed–fixed (or fixed–free) ends is
when the set of locations of the actuators includes at
least one of the following configurations (seeAppendix
5 for a detailed derivation).

1. A single actuator is placed on the first mass and/or
the last mass of the lattice.

2. Two actuators are placed on two consecutive
masses located anywhere in the lattice.
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Table 1 Description of the four numerical simulation examples considered in this section

Example
number

Boundary
conditions

Homogeneity of
lattice

Location of initial
excitation

Energy raised/
lowered

Actuator
locations

λo

1 Fixed–Fixed Homogeneous and
Nonhomogeneous

m51 Raised m75, m76 0.1

2 Fixed–Fixed Nonhomogeneous m51 Raised Multiple sets of
actuator
configurations

0.01

3 Fixed–Free Homogeneous and
Nonhomogeneous

m51 Lowered m75, m76 0.1

4 Fixed–Free Nonhomogeneous Random initial
excitation (all
masses)

Lowered m101 0.1

Now, since the origin O (q ≡ q̇ ≡ 0) is excluded from
the set �, the largest invariant set in E is given by

P =
{
(q, q̇) ∈ R

2n | H(q, q̇) = H∗; H∗ > 0
}

.

(5.18)

Then, by the invariance principle, every solution x(t)
starting in � approaches P as t → ∞. Thus, global
asymptotic convergence to the set H(q, q̇) = H∗ has
been established in �. Now, since c can be chosen to
be arbitrarily large and ε can be chosen to be arbitrarily
small, all orbits inR2n −{O} asymptotically tend to P .
Moreover, since the open region around the origin can
be made arbitrarily small through a proper choice of ε,
the origin is an unstable fixed point.

This proves then that for a nonhomogeneous NDOF
Toda lattice with initial energy Ho > 0, the control
force FC derived in (4.12) gives us global asymptotic
convergence to any given desired energy state H∗ in
R
2n −{O} provided that the first mass, or the last mass,

or alternatively any two consecutivemasses of the Toda
lattice are included in the subset of masses that are
controlled. The result is valid for both fixed–fixed and
fixed–free boundary conditions.

6 Results and simulations

In this section, numerical simulations involving a Toda
lattice with fixed–fixed and fixed–free boundary con-
ditions are presented to illustrate the ease and efficacy
with which the control methods described in this paper
can be applied. Sincen can be anyfinitely large number,
a 101-mass lattice is chosen.

One of the significant results of this paper is that
though the control is highly underactuated, it is still

guaranteed to control the energy of the lattice from any
nonzero initial state to any other nonzero desired final
state. As shown analytically in Sect. 5.2, to achieve this
desired energy state, one could use just a single actuator
placed on the first mass m1 of the lattice (or on the last
massmn of the of the lattice, see Fig. 1), or one can sim-
ply actuate two neighboring masses located anywhere
in the lattice, no matter how many degrees of freedom
the lattice has. This is shown to be true for different
boundary conditions, and whether or not the lattice is
homogeneous. Furthermore, the rate of convergence
to the desired energy state can also be controlled, and
in addition, various sets of actuator locations can be
chosen. To illustrate the scope of all these qualitatively
different results, four different examples are considered
as shown in Table 1. They are described below.

Boundary conditions and homogeneity of the lattice
Examples 1 and 2 deal with a fixed–fixed Toda lattice,
whereas Examples 3 and 4 deal with a fixed–free Toda
lattice. Examples 1 and 3 consider both a homogeneous
lattice (for purposes of comparison) and a nonhomoge-
neous lattice. Examples 2 and 4 deal exclusively with
nonhomogeneous lattices.

Specification of the lattice parameters In Example 1,
the values of the spring constants (ai , bi ) and the
masses (mi ) of the fixed–fixed homogeneous lattice
(see Fig. 1) are taken to be ai = 2, bi = 1 for 0
≤ i ≤ 101, and mi = 1 for 1 ≤ i ≤ 101. For the
fixed–free homogeneous Toda lattice in Example 3,
the last spring element (i.e., the spring element with
spring constants a101, b101) is discarded keeping all
the other spring element and mass parameter values
the same as in Example 1. The values of the spring
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constants and the masses of the fixed–fixed nonhomo-
geneous lattice in Example 1 are selected at random
from a uniformly distributed set of numbers between
the limits: 1.5 < ai < 2.5, 0.5 < bi < 1.5 for 0 ≤ i ≤
101, 0.5 < mi < 1.5 for 1 ≤ i ≤ 101. The nonhomo-
geneous lattice in Example 2 has the same parameter
values as those in Example 1. The parameter values of
the fixed–free nonhomogeneous lattices in Examples 3
and 4 are also the same as those in Example 1, except
that the last spring element is discarded, as before.

Specification of initial conditions In Examples 1, 2,
and 3, the lattice is initially excited with all masses hav-
ing zero initial displacement and zero initial velocity
except for the mass located at the center of the lattice,
m51, which is given an initial displacement. In Exam-
ple 4, all the masses of the fixed–free lattice are excited
with random initial displacements and random initial
velocities.

Specification of energy control requirements In all of
the examples, the aim is to control the energy in these
respective lattices and bring them to the desired energy
level. In Examples 1 and 2, the energy of the lattice
is desired to be increased from its initial state, while
in the latter two examples, the energy is desired to be
reduced.

Actuator locations To achieve these desired energy
levels, control can be applied to one or more of these
101 masses (provided that the first mass, or the last
mass, or alternatively any two consecutive masses of
the lattice are included in the subset of masses that are
controlled). In Examples 1 and 3, control is applied to
two consecutive masses,m75 andm76, located at about
three-quarters the distance from the left end of the lat-
tice (see Fig. 1). In Example 2, five different sets of
actuator configurations are chosen to exhibit the effect
of the placement of the actuators on the time it takes
for the controlled lattice to get to the desired energy
level. In Example 4, only the last mass of the lattice is
actuated in order to lower its energy.

The constant λo (see Eq. 4.12) which affects the
rate at which the controlled lattice converges to the
desired energy level is chosen to be 0.1 in all of the
examples, except in Example 2 where it is lowered to
0.01 to allow for an easier comparison of the times
taken by the different sets of actuator configurations
to reach the desired energy level. In all four examples

considered in this section, the equations of motion are
integrated using ode113 in the MATLAB environment
with a relative integration error tolerance of 1e–10 and
an absolute error tolerance of 1e–13. All quantities are
assumed to be in consistent units.

6.1 Fixed–fixed Toda lattice

Example 1 In the first example, we study a 101-mass
Toda lattice with fixed–fixed boundary conditions. Our
aim is to raise the energy of both a homogeneous lat-
tice (for comparison) and a nonhomogeneous lattice
(both of whose parameters are as described earlier) to a
desired level of 150 units in each case. Themass located
at the center of the lattice,m51, is initially displaced by
3 units, both in the homogeneous and the nonhomoge-
neous lattice. This causes the initial energy level, Ho,
of the homogeneous and the nonhomogeneous lattice
to be 36.27 and 83.58 units, respectively.

Homogeneous lattice Figure 6a shows the velocity
field for the uncontrolled (unconstrained) homoge-
neous lattice, where time is plotted on the x-axis, and
the location of the masses is plotted on the y-axis. The
velocity of each mass, which is plotted on the z-axis,
is instead shown through a color variation (see color
scale on the right of the figure). As shown in Fig. 6a,
the initial displacement of the mass at the center of the
lattice gives rise to, what appear to be, multiple soli-
ton structures propagating through the velocity field.
Amongmany small waves, there appear to be two large
solitons generated at t = 0, one with positive velocity
amplitude (shown in dark red) traveling toward the left
end of the lattice (toward mass m1) and another with
negative velocity amplitude (shown in dark blue) trav-
eling toward the right end of the lattice (toward mass
m101). When each of these solitons reaches the fixed
end, the incident soliton is reflected, and the reflected
soliton has its amplitude reversed in sign. The propa-
gation speed of these individual solitons appears to be
constant (as seen from the slopes of these lines), with
the two large solitons traveling at a faster rate than the
smaller waves. The reflections of these two large soli-
tons first cross each other at around 52 s, and they con-
tinue to propagate undisturbed after they cross.

The explicit closed-form control given in Eq. (4.12)
is now applied to this homogeneous lattice at masses
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Fig. 6 Example 1: Velocity field of the 101-mass fixed–fixed
homogeneous Toda lattice. The lattice has parameters ai =
2, bi = 1,mi = 1 for all i, Ho = 36.27, H∗ = 150, λo = 0.1
and the initial displacement of centermass (m51) is 3 units. Actu-
ators are located on masses m75 and m76. a Uncontrolled homo-
geneous lattice. b Controlled homogeneous lattice. (Color figure
online)

m75 and m76, so that the controlled lattice achieves the
desired energy level of 150 units. A plot of the control
forces is shown in Fig. 8a from t = 0 to t = 25 s.
The dotted red and blue lines denote the control forces
acting on actuator masses m75 and m76, respectively.
As shown in the plot, a finite amount of time elapses
before the control begins. This is because it takes a
finite amount of time for the initial excitation at the
center of the lattice to traverse through the lattice and
reach the actuator locations at m75 and m76. Since the
control forces depend on the velocity of the actuated
masses [see Eq. (4.12)], once the actuator masses are
in motion at around 9 s, the control begins and the
desired energy state of H∗ = 150 (see Fig. 8b, top) is
very quickly achieved. Once the desired energy state

is achieved, the control forces terminate (see Fig. 8a)
and the conservative nature of the lattice is utilized to
maintain its energy at the desired level for all future
time. Figure 6b shows a plot of the velocity field for
the controlled homogeneous lattice. From the figure,
we observe that coinciding with the application of the
control forces, a new set of soliton structures is gener-
ated (see black circle in the figure) in addition to those
already generated by the initial displacement of the cen-
ter mass. Some of these newly generated solitons have
larger amplitudes and higher propagation speeds when
compared to those extant. Figure 8b (bottom subplot)
shows the energy error, e(t) = H(t)−H∗, in achieving
the desired energy level plotted as a function of time
from t = 400 to t = 500 s. As shown in the figure, the
magnitude of this error is commensurate with the error
tolerances used in integrating the equations of motion
of the controlled system.

Nonhomogeneous lattice We next consider the uncon-
trolled nonhomogeneous lattice whose velocity field is
shown in Fig. 7a. As shown in the figure, the initial dis-
placement of the mass at the center of the lattice, m51,
generates waves at t = 0, which traverse through the
length of the lattice. The crisscross pattern shown in the
figure is generated by the propagation of these waves
and their reflection at the boundaries. The distinct soli-
ton structures that were observed in the velocity field
of the homogeneous lattice are no longer present in the
nonhomogeneous lattice, and this absence is due to the
nonhomogeneity of the lattice. Once again, we apply
control [see Eq. (4.12)] to this nonhomogeneous lat-
tice to raise its energy level from Ho = 83.58 units to
H∗ = 150 units. The time history of the control forces
obtained by using Eq. (4.12) is shown in Fig. 8a where
the solid red andblue lines denote the control forces act-
ing on the actuator masses m75 and m76, respectively.
The control begins at around 11 s and again quickly sta-
bilizes the lattice at the desired energy level (seeFig. 8b,
top). The control generates its own velocity field caus-
ing waves to emanate at around 11 s (see black circle
in Fig. 7b) in addition to those already generated by the
initial displacement of the center mass. Figure 8b (bot-
tom subplot) shows the energy error, e(t) = H(t)−H∗,
as before.

Example 2 In this example, a 101-mass nonhomoge-
neous Toda lattice with fixed–fixed ends is considered
with the same parameter values for the spring elements
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Fig. 7 Example 1: Velocity field of the 101-mass fixed–fixed
nonhomogeneous Toda lattice. The nonhomogeneous lattice has
parameters a, b, and m chosen randomly from a uniformly dis-
tributed set of numbers between the limits: 1.5< ai < 2.5, 0.5 <

bi < 1.5 and 0.5 < mi < 1.5, Ho = 83.58, H∗ = 150, λo =
0.1, and the initial displacement of center mass (m51) is 3 units.
Actuators are located on masses m75 and m76. a Uncontrolled
nonhomogeneous lattice. b Controlled nonhomogeneous lattice.
(Color figure online)

and the masses as in the previous example. An initial
displacement of 3 units is given to the mass located
at the center of the lattice like in the previous exam-
ple, and this causes the initial energy of the lattice to
be Ho = 83.58 units. Five different sets of actuator
configurations are considered (in accordance with the
actuator location rules specified inAppendix 5) to study
their effect on the time it takes for the controlled non-
homogeneous lattice to reach a desired energy level of
150 units. The configurations are (see Fig. 9a): (1) only
mass m1 is actuated; (2) only masses m75 and m76 are
actuated; (3) onlymassesm50 andm51 are actuated; (4)
every tenth mass along the lattice is actuated starting

Fig. 8 a Example 1: Time history of control forces acting on
the two actuator masses m75 and m76 of the lattice. Dotted lines
denote control forces acting on the homogeneous lattice, and the
solid lines denote the control forces acting on the nonhomoge-
neous lattice. Red line denotes the control force acting on the
massm75, and blue line denotes the control force acting on mass
m76. b Example 1: (Top subplot) Time history of energy of the
lattice from t = 0 to 25 s. (Bottom subplot) Time history of
energy error e(t) = H(t) − H∗ from t = 400 to 500 s. Green
line denotes the homogeneous lattice and pink line denotes the
nonhomogeneous lattice. (Color figure online)

with massm1; and (5) every fifth mass along the lattice
is actuated starting with massm1. As described earlier,
the parameter λo (see Eq. 4.12) is lowered to 0.01 in
the present example.

Figure 9 shows a plot of the convergence of the lat-
tice’s energy to the desired energy level as a function of
time for the five sets of actuator configurations that are
considered. From the figure, we observe that the lat-
tice controlled using two consecutive actuators placed
at roughly three-quarters the distance from the left end
of the lattice at m75, and m76 takes the longest time to

123



www.manaraa.com

1370 F. E. Udwadia, H. Mylapilli

Fig. 9 Example 2: Nonhomogeneous Toda lattice with fixed–
fixed boundary conditions. The lattice has its parameters chosen
randomly from a uniformly distributed set of numbers between
the limits: 1.5 < ai < 2.5, 0.5 < bi < 1.5, 0.5 < mi <

1.5, Ho = 83.58, H∗ = 150, λo = 0.01, and initial displace-
ment of the center mass (m51) is 3 units. a Time history of energy
convergence for different sets of actuator configurations of the
101-mass fixed–fixed nonhomogeneous Toda lattice. b Zoomed-
in plot showing the energy convergence for the five different sets
of actuator configurations. (Color figure online)

reach the desired energy state, longer even compared
to a single actuator placed on the first mass (m1) of the
lattice. However, if one chooses to place these actuators
on two consecutive masses at m50 and m51, closer to
the initial excitation at the center of the lattice (i.e., at
mass m51), the desired energy state is achieved com-
paratively faster (in approximately 140 s). Furthermore,
using 11 and 21 equidistantly placed actuators with the
first of these actuators placed on the first mass of the
lattice helps us in attaining the energy state in approx-
imately 80 s and 45 s, respectively. We, thus, conclude
that the time taken for the controlled lattice to reach the

desired energy state depends on the number of actua-
tors, the placement of these actuators, as well as on the
nature of the initial excitation of the lattice. Though an
interesting problem in itself, we, however, do not delve
deeper into it here as it will take us too far afield from
the central focus of this paper.

6.2 Fixed–free Toda lattice

Example 3 In this example, we study a 101-mass Toda
lattice with fixed–free boundary conditions. Our aim is
to lower the energy of a homogeneous lattice (for com-
parison) and a nonhomogeneous lattice from an initial
energy level of approximately 150 units to a desired
level of 100 units. The parameter values of the lattices
are as described earlier. To initialize both lattices at an
energy level of approximately 150 units, the initial dis-
placement of the mass at the center of the lattice, m51,
is chosen to be 4.34 units in the homogeneous case
(this causes its initial energy level, Ho, to be 149.44
units) and 3.41 units in the nonhomogeneous case (ini-
tial energy level, Ho, is 149.90 units), with all the other
masses in the respective lattices given zero initial dis-
placement and zero initial velocity.

Homogeneous lattice A plot of the velocity field of the
homogeneous lattice is shown in Fig. 10. Once again,
similar to Example 1, we observe that the initial dis-
placement of the center mass gives rise to two large
solitons in addition to many small waves in the veloc-
ity field of the uncontrolled homogeneous lattice (see
Fig. 10a). Since the left end of the lattice is a fixed end,
the positive velocity amplitude soliton traveling toward
m1 is reflected, and the reflected soliton has its velocity
amplitude reversed in sign, but its magnitude remains
the same as the incident soliton. On the other hand,
the large negative amplitude soliton traveling toward
the free end of the lattice toward m101 is imperfectly
reflected. The free end has the effect of breaking up
the incident soliton into a smaller amplitude (reflected)
soliton and many small (reflected) waves that can be
seen traversing through the velocity field (see Fig. 10a).
This behavior is consistent with what has been docu-
mented in the literature [35]. Next, we apply control
to this homogeneous lattice at masses m75 and m76 to
reduce its energy level to 100 units. From Fig. 10b, we
observe that the application of the control force breaks
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Fig. 10 Example 3: Velocity field of the 101-mass fixed–free
homogeneous Toda lattice. The lattice has parameters ai =
2, bi = 1,mi = 1 for all i, Ho = 149.44, H∗ = 100, λo = 0.1
and the initial displacement of center mass (m51) is 4.34 units.
Actuators are located on masses m75 and m76. a Uncontrolled
homogeneous lattice. b Controlled homogeneous lattice. (Color
figure online)

the large negative velocity amplitude soliton (generated
by the initial displacement of the center massm51) into
two slower-moving smaller solitons (see black circle
in the figure), one having positive velocity amplitude
traveling toward the left end of the lattice and another
having negative amplitude traveling toward the right
end of the lattice. The time history of control forces
acting on the homogeneous lattice is shown in the top
subplot of Fig. 12a. Figure 12b shows that the desired
energy level of 100 units is achieved, and the energy
error lies close to the tolerance levels specified in the
integration algorithm.

Nonhomogeneous lattice Figure 11a shows a plot of
the velocity field of the uncontrolled nonhomogeneous

Fig. 11 Example 3: Velocity field of the 101-mass fixed–free
nonhomogeneous Toda lattice. The nonhomogeneous lattice has
parameters a, b, and m chosen randomly from a uniformly
distributed set of numbers between the limits: 1.5 < ai <

2.5, 0.5 < bi < 1.5 and 0.5 < mi < 1.5, Ho = 149.9, H∗ =
100, λo = 0.1, and the initial displacement of center mass (m51)

is 3.41 units. Actuators are located on masses m75 and m76. a
Uncontrolled nonhomogeneous lattice. b Controlled nonhomo-
geneous lattice. (Color figure online)

lattice with fixed–free ends, wherein the mass at the
center of the lattice, m51, is provided an initial dis-
placement of 3.41 units. Once again, like in Example 1,
the absence of distinct soliton structures in the velocity
field of the nonhomogeneous lattice is evident. Control
is applied to massesm75 andm76 to reduce the lattice’s
energy from 149.9 to 100 units. From the velocity field
of the controlled lattice (shown in Fig. 11b), we note
that the set of masses located beyond masses m75 and
m76 have amplitudes of motion that are smaller than
the other masses in the lattice. The actuators at m75

and m76 damp out the motion in the lattice through
destructive interference in order to reduce the lattice’s
energy.
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Fig. 12 a Example 3: Time history of control forces acting on
the two actuator masses m75 (red line) and m76 (blue line) of
the homogeneous lattice (top subplot) and the nonhomogeneous
lattice (bottom subplot).bExample 3: (Top subplot) Time history
of energy from t = 0 to 250 s. (Bottom subplot) Time history
of energy error e(t) = H(t) − H∗ from t = 750 to 1000 s.
Green line denotes the homogeneous case and pink denotes the
nonhomogeneous case. (Color figure online)

Comparing Figs. 12(a) to 8(a), we note that the con-
trol acts for a longer duration, and it takes a longer time
for the lattice to reach the desired energy state (both in
the homogeneous and nonhomogeneous lattice) when
the energy of the lattice is desired to be reduced as com-
pared to when the energy of the lattice is desired to be
raised. As before, Fig. 12b shows that the desired level
of 100 units is attained, and that the energy errors lie
close to the tolerance levels specified by the integration
algorithm.

Fig. 13 Example 4: Velocity field of the 101-mass fixed–free
nonhomogeneous Toda lattice subjected to random initial exci-
tation. The nonhomogeneous lattice has parameters a, b, and
m chosen randomly from a uniformly distributed set of num-
bers between the limits: 1.5 < ai < 2.5, 0.5 < bi < 1.5 and
0.5 < mi < 1.5, Ho = 341.47, H∗ = 250, λo = 0.1. The
initial displacements and initial velocities are chosen randomly
between the limits −2 and 2. A single actuator is placed on the
last mass of the fixed–free lattice (i.e., on m101). a Uncontrolled
nonhomogeneous lattice. b Controlled nonhomogeneous lattice.
(Color figure online)

Example 4 In this final example, a fixed–free nonho-
mogeneous Toda lattice subjected to random initial
excitation is considered. The initial displacements and
initial velocities of each of the 101 masses in the lat-
tice are chosen at random from a uniformly distributed
set of numbers between the limits −2 and 2. This ran-
dom selection of the initial conditions causes the lat-
tice to have an initial energy level Ho = 341.47 units,
and the aim is to reduce this energy to H∗ = 250
units using only a single actuator located on the last
mass (m101) of the fixed–free lattice.
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Fig. 14 a Example 4: Time history of control forces acting on
the last mass m101 of the nonhomogeneous lattice. b Example
4: (Top subplot) Time history of energy from t = 0 to 150 s.
(Bottom subplot) Time history of energy error e(t) = H(t)−H∗
from t = 500 to 750 s. (Color figure online)

Figure 13a shows the velocity field of the uncon-
trolled nonhomogeneous lattice subjected to random
initial conditions. Control is now applied to the last
mass (m101) of the fixed–free lattice to reduce its
energy. Figure 13b shows the velocity field of the con-
trolled nonhomogeneous lattice, where we observe that
the response of the controlled lattice is markedly dif-
ferent from the uncontrolled lattice. This is especially
evident near right end of the lattice (close to the last
mass m101) where the motion of the lattice is being
damped out through destructive interference in order
to reduce its energy. Figure 14a shows a time history
of the control forces acting on the last mass of the lat-
tice where we note that the control acts right from the
instant t = 0 . Figure 14b shows a plot of the energy
convergence and energy errors in achieving the desired
energy state, as before.

In all of the examples considered in this section,
once the desired energy state is achieved, the control
forces automatically become zero (see Figs. 8a, 12a,
14a), and the conservative nature of the lattice is there-
after utilized to maintain its energy at the desired level
for all future time. Further, in all of the examples, the
energy errors are small and lie close to the tolerance
levels specified in our integration algorithm (see Figs.
8b, 12b, 14b), highlighting the efficacy of the control
methodology in achieving the desired energy state.

7 Conclusions

This paper considers the energy control problem of
an n-degrees-of-freedom nonhomogeneous Toda lat-
tice with fixed–fixed (and fixed–free) boundary con-
ditions. Unlike previous investigators, we consider a
nonhomogeneous Toda lattice, which has more practi-
cal applicability as opposed to the idealized homoge-
nous case. The control approach adopted in this paper
is inspired by recent results in analytical dynamics that
deal with the theory of constrained motion. For a given
set of masses at which the control is to be applied,
explicit closed-form expressions for the nonlinear con-
trol forces are obtained by using the fundamental equa-
tion of mechanics. In spite of the nonhomogeneous
nature of the Toda lattice considered in this study, the
control is obtained with relative ease and, in closed
form, without the need for any approximations and/or
linearizations of the nonlinear dynamical system and
without the need to impose any a priori structure on the
nature of the nonlinear controller. The resulting equa-
tions of motion of the controlled Toda lattice resemble
those of a self-excited system akin to aVan der Pol non-
linear oscillator. The control forces act on the NDOF
Toda lattice to bring it to the desired energy level; once
this energy level is attained, the control forces auto-
matically terminate, and the conservative nature of the
lattice is thereafter utilized to maintain its energy at the
desired level for all future time. The control forces, FC ,
are continuous in time and are optimal; they minimize
the control cost given by J (t) = [FC ]T M−1[FC ] at
each instant of timewhile causing the energy constraint
(Eq. 4.6) to be exactly satisfied. LaSalle’s invariance
principle is used to establish that the control forces give
us global asymptotic convergence to any given nonzero
desired energy state provided that the first mass, or the
last mass, or alternatively any two consecutive masses
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of the lattice are included in the subset of masses that
are controlled. The manifold H(q, q̇) = H∗ forms
a globally attracting limit surface in 2n-dimensional
phase space, and the trajectories of the controlled sys-
temasymptotically tend to this surface. TheToda lattice
is highly underactuated. With just one actuator placed
at either end of the chain, or with two actuators placed
adjacent to each other anywhere in the chain, the energy
of the entire lattice can be controlled. Numerical sim-
ulations involving a 101-mass Toda lattice with fixed–
fixed andfixed–free boundary conditions are presented,
where the behavior of homogeneous and nonhomoge-
neous lattices is contrasted. Complex nonlinear wave
interactions are found in both the uncontrolled and the
controlled systems. The closed-form control obtained
analytically is shown to work well for both increas-
ing and decreasing the energy of the nonlinear lattice
demonstrating the ease, simplicity, and accuracy with
which the general control methodology works. The
interested reader can refer to Refs. [27–31,36,37] for
other complex nonlinear systems inwhich thismethod-
ology has been shown to work well.

Appendix 1: H is a positive definite function in 2
n-dimensional phase space

The energy function H for a nonhomogeneous NDOF
Toda lattice is given by

H(x) = H(q, q̇) = T (q̇) +U (q) =
n+1∑
i=1

[
1

2
mi q̇

2
i

]

+
n∑

i=0

[
ai
bi
ebi (qi+1 − qi ) − ai (qi+1 − qi )−ai

bi

]
. (7.1)

The kinetic energy T is a sum of n quadratic terms
with T (0) = 0 and T (q̇) > 0 ∀ q̇ �= 0. The potential
energyU on the other hand is a sumof (n+1) functions,
ui , i = 0, 1, 2, . . . n, for the fixed–fixed lattice, and a
sum of n functions, ui , i = 0, 1, 2, . . . n − 1, for the
fixed–free lattice (un = 0 as an = bn = 0), where each
ui assumes the form

ui (δi ) = ai
bi
ebi δi − aiδi − ai

bi
, (7.2)

where δi = qi+1 − qi . For ai , bi > 0, each potential
function ui is positive definite (see Sect. 2 for reason-
ing) and hence ui (0) = 0 and ui (δi ) > 0 ∀ δi �= 0.
Therefore, U (q) = ∑

ui (δi ) > 0 ∀ q �= 0 (as q �= 0
implies that at least one of the δi ’s is not equal to zero).

Further, since the left end is fixed (qo ≡ 0) for both
a fixed–fixed and a fixed–free Toda lattice, δi = 0 ∀ i
implies q = 0. Thus,U (0) = ∑

ui (0) = 0.Therefore,
we obtain H(0) = 0 and H(x) > 0 ∀ x �= 0 where
x = (q, q̇) ∈ R

2n . Hence, the energy function H is
strictly positive definite.

Appendix 2: Closed-form expression for the control
force FC

In this appendix, we derive a closed-form expression
for the explicit nonlinear control force FC using Eq.
(3.7). The constraint matrices A and b are expressed
in terms of the “control selection matrix”, C , and the
“no-control selection matrix”, N (see Sect. 4). And
therefore, before we compute the control force, let us
list some properties of the matrices C and N .

Properties of the matrices C and N

a. CTC + NT N = IC + IN = In, where In denotes
the n-by-n identity matrix.

b. CCT = Ik , where Ik denotes the k-by-k identity
matrix.

c. NNT = In−k, where In−k denotes the (n − k)-by-
(n − k) identity matrix.

d. IC
 = CTC
 = 
CTC = 
IC for all diagonal
matrices 
.

e. IN
 = NT N
 = 
NT N = 
IN for all diagonal
matrices 
.

f. NCT = [O](n−k)×k ⇒ NMCT = [O](n−k)×k ,
where [O] denotes the zero matrix.

g. CNT = [O]k×(n−k) ⇒ CMNT = [O]k×(n−k),
where [O] denotes the zero matrix.

h. IC IN = IN IC = [O]n×n , where [O] denotes the
zero matrix.

i. IC NT = CTCNT = [O]n×(n−k), where [O]
denotes the zero matrix.

j. INCT = NT NCT = [O]n×k , where [O] denotes
the zero matrix.

k. ICCT = CT , IN NT = NT

The computation of the control force, FC , involves the
evaluation of the Moore–Penrose (MP) inverse [16] of
the (n − k + 1)-by-n matrix B given by

B = AM−1/2 =
[
q̇T M
NM

]
M−1/2 =

[
q̇T M1/2

NM1/2

]

(7.3)

Given any (n − k + 1)-by-n matrix B, there exists a
unique n-by-(n− k+1) matrix B+, called the Moore–

123



www.manaraa.com

Energy control of nonhomogeneous Toda lattices 1375

Penrose inverse of the matrix B, which satisfies the
following four conditions [19].

1. (BB+)T = BB+, 2. (B+B)T = B+B,

3. BB+B = B, 4. B+BB+ = B+

For amatrix B given by (7.3), we claim that B+ is given
by

B+ =
[

M1/2CT Cq̇
q̇T CT CMq̇

∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇T NT

q̇T CT CMq̇

]

(7.4)

Assuming that the B+ given by (7.4) is indeed the cor-
rect expression for the MP inverse of B, we show that
it satisfies all four conditions of the MP inverse.

(i) BB+ =
[
q̇T M1/2

NM1/2

]

[
M1/2CTCq̇
q̇T CT CMq̇

∣∣∣∣ M−1/2NT − M1/2CT Cq̇q̇T NT

q̇T CT CMq̇

]

=
⎡
⎣

q̇T MCT Cq̇
q̇T CT CMq̇

q̇T NT −
(
q̇T MCT Cq̇

)
q̇T NT

q̇T CT CMq̇(
NMCT

)
Cq̇

q̇T CT CMq̇
N NT −

(
NMCT

)
Cq̇q̇T NT

q̇T CT CMq̇

⎤
⎦

= In−k+1 (7.5)

By applying Property (d), the (1, 1) block of (7.5) is
unity, and the (1, 2) block simplifies to a (n − k)-sized
zero row vector. The (2, 1) block is a (n − k)-sized
column vector which is zero by virtue of Property (f).
Similarly, the (2, 2) block is an (n − k)-by-(n − k)
matrixwhich reduces to NNT by applying Property (f),
which further simplifies to In−k by applying Property
(c). This reduces the matrix BB+ to an identity matrix
of size (n − k + 1). Hence, the first MP condition is
satisfied.

(ii) B+B=
[

M1/2CTCq̇
q̇T CT CMq̇

∣∣∣∣ M−1/2NT − M1/2CTCq̇q̇T NT

q̇T CT CMq̇

]

[
q̇T M1/2

NM1/2

]

=
[
M1/2CTCq̇q̇T M1/2

q̇T CTCMq̇
+ M−1/2NT NM1/2

−M1/2CTCq̇q̇T NT NM1/2

q̇T CTCMq̇

]

=
[
M1/2CTCq̇q̇T

(
I − NT N

)
M1/2

q̇T CTCMq̇

+M−1/2NT NM1/2
]

=
[
M1/2CTCq̇q̇T CTCM1/2

q̇T CTCMq̇
+ NT N

]
(7.6)

To arrive at the last equality of (7.6), Properties (a) and
(e) have been used. Clearly, the matrix B+B is sym-
metric, and thus, the second MP condition is satisfied.

(iii) BB+B = In−k+1B = B, which directly fol-
lows from Eq. (7.5).

(iv) B+BB+ =[
M1/2CTCq̇q̇T CTCM1/2

q̇T CTCMq̇
+ NT N

]

[
M1/2CTCq̇
q̇T CT CMq̇

∣∣∣∣ M−1/2NT − M1/2CT Cq̇q̇T NT

q̇T CT CMq̇

]

The B+ B B+ matrix is a 1-by-2 block matrix, where
the (1, 1) block is given by

(1, 1) =
[
M1/2CTCq̇q̇T CTCMCTCq̇(

q̇T CTCMq̇
)2

+ NT
(
NM1/2CT

)
Cq̇

q̇T CTCMq̇

]

=
[
M1/2CTCq̇q̇T CT

(
CCT

)
CMq̇

(
q̇T CTCMq̇

)2
]

=
[
M1/2CTCq̇

(
q̇T CTCMq̇

)
(
q̇T CTCMq̇

)2
]

=
[
M1/2CTCq̇

q̇T CTCMq̇

]
(7.7)

In the derivation of (7.7) above, the second term of the
first equality drops out by virtue of Property (f), and the
first term is simplified by using Properties (d) and (b).
Next, the (1, 2) block of the matrix B+ B B+ is given
by

(1, 2) =
[
M1/2CTCq̇q̇T CT

(
CM1/2M−1/2NT

)

q̇T CTCMq̇

+NT NM−1/2NT

−M1/2CTCq̇q̇T CTC M1/2M1/2CTCq̇q̇T NT

(
q̇T CTC Mq̇

)2

−NT
(
NM1/2CT

)
Cq̇q̇T NT

q̇T CTCMq̇

]
(7.8)

The first and the fourth terms of the (1, 2) block above
drop out by virtue of Properties (g) and (f), respectively.
When Property (e) is applied to the second term and
Property (d) is applied to the third term, the (1, 2) block
of B+ B B+ matrix reduces to
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(1, 2) =
[
M−1/2NT

(
NNT

)

−M1/2CTCq̇q̇T CT
(
CCT

)
CMq̇q̇T NT

(
q̇T CTCMq̇

)2
]

=
[
M−1/2NT − M1/2CTCq̇

(
q̇T CTCMq̇

)
q̇T NT

(
q̇T CTCMq̇

)2
]

=
[
M−1/2NT − M1/2CTCq̇q̇T NT

q̇T CTCMq̇

]
(7.9)

We note that Properties (b) and (c) have been used to
simplify the first equality of (7.9). Hence, we obtain
B+ B B+ as

B+BB+ =
[

M1/2CTCq̇
q̇T CT CMq̇

∣∣∣∣ M−1/2NT − M1/2CT Cq̇q̇T NT

q̇T CT CMq̇

]

= B+, (7.10)

which satisfies the fourth MP condition. Since all four
MP conditions are satisfied, we ascertain that the B+
given by (7.4) is indeed the correct expression for the
Moore–Penrose inverse of the matrix B.

Main Result: The control force can now be calculated
as

FC (q, q̇, t) = M1/2(AM−1/2)+(b − Aa)

= M1/2B+
[
b −

[
q̇T M
NM

]
M−1F

]

= M1/2B+
[[

q̇T F − β (H − H∗)
NF

]
−

[
q̇T F
N F

]]

= M1/2B+
[ −β (H − H∗)
[O](n−k)×1

]

= M1/2
[
M1/2CTCq̇

q̇T CTCMq̇

∣∣∣∣M−1/2NT − M1/2CTCq̇q̇T NT

q̇T CTCMq̇

]

[ −β (H − H∗)
[O](n−k)×1

]

=
[

MCTCq̇

q̇T CTCMq̇

∣∣∣∣ NT − MCTCq̇q̇T NT

q̇T CTCMq̇

]

[ −β (H − H∗)
[O](n−k)×1

]

= −β (H − H∗)
q̇T CTCMq̇

MCTCq̇

= −β (H(q, q̇) − H∗)
q̇TC MCq̇C

ICMq̇, (7.11)

where q̇TC MCq̇C = ∑k
g=1

(
mig q̇

2
ig

)
is twice the kinetic

energy of the set of controlled masses. Also, from
the third equality of (7.11), we note that whenever an
energy stabilization constraint is applied to a mechani-
cal system, the term q̇TF always drops out as long as the

system under consideration is conservative. This con-
cludes our derivation of the explicit nonlinear control
force in closed form.

Appendix 3: Origin is a unique isolated equilibrium
point

Consider a nonhomogeneous NDOF Toda lattice with
fixed–fixed (or fixed–free) boundary conditions. The
equilibrium points of the uncontrolled (unconstrained)
and the controlled (constrained) system can be calcu-
lated by substituting q̇ ≡ q̈ ≡ 0 in Eqs. (2.6) and
(5.12), respectively. In both cases, we obtain F =
[O]n×1, where the i th row of this relation can bewritten
as

ai−1

[
ebi−1(qi (t)− qi−1(t))−1

]
=ai

[
ebi (qi+1(t) − qi (t))−1

]
,

i = 1, 2, . . . n, (7.12)

For the fixed–fixed lattice, (7.12) implies

ai
[
ebi (qi+1(t) − qi (t))−1

]
= c(t), i = 0, 1, 2, . . . n,

(7.13)

so that
1

bi
ln

[
1 + c(t)

ai

]
= qi+1(t) − qi (t), i = 0, 1, . . . n.

(7.14)

Summing over i on both sides of (7.14), we have
n∑

i=0

1

bi
ln

[
1 + c(t)

ai

]
=

n∑
i=0

(qi+1(t) − qi (t))

= qn+1(t) − qo(t). (7.15)

Since qo(t) ≡ qn+1(t) ≡ 0, we have
∑n

i=0
1
bi
ln[

1 + c(t)
ai

]
= 0, whose only solution is c(t) = 0. From

(7.14) then with c(t) = 0, we have

qi+1(t) − qi (t) = 0, i = 0, 1, 2, . . . n, (7.16)

which implies qi (t) = 0, i = 1, 2, . . . n, since qo(t) ≡
0. For the fixed–free case, when i = n, an = bn = 0
and hence (7.12) yields

ai
[
ebi (qi+1(t)−qi (t)) − 1

]
= 0, i = 0, 1, 2, . . . n − 1,

(7.17)

as in the fixed–fixed case. And since qo(t) ≡ 0, we
again obtain qi (t) = 0, i = 1, 2, . . . n. Therefore, in
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2n-dimensional phase space, the originO, i.e., (q, q̇) =
(0, 0), is a unique and isolated equilibrium point of
the uncontrolled (and the controlled) nonhomogeneous
NDOF Toda lattice.

Appendix 4: � is compact

In this appendix, our aim is to show that the set �

[described by Eq. (5.14)] is compact. The set � can be
alternatively conceived as

� = H−1 ([ε, c]) =
{
x ∈ R

2n | ε ≤ H(x) ≤ c
}

,

where 0 < ε < H∗ < c, and H−1 denotes the pre-
image of the energy function H , which is given by

H(x) = H(q, q̇)

=
n+1∑
i=1

[
1

2
mi q̇

2
i

]

+
n∑

i=0

[
ai
bi
ebi (qi+1 − qi ) − ai (qi+1 − qi ) − ai

bi

]

=
∑
i

hi (7.18)

To prove that � is compact, we make use of the fol-
lowing result [38,39].

Let X ⊂ R
2nand Y ⊂ R

+be Euclidean spaces. A
function H : X → Y is radially unbounded if and only
if the pre-image H−1(K ) of every compact set K ⊆ Y
is compact in X.
To use this result, we need to first establish that the
energy H is radially unbounded.

H : R2n → R
+ is a radially unbounded function

The energy function H is said to be radially
unbounded if given any M ∈ R

+, there exists an
R ∈ R

+ such that H(x) > M for all ‖x‖ > R
[40]. We use the infinity norm ‖·‖∞ to prove our
results. The basic idea behind the approach is to equate
each individual term hi (see Eq. 7.18) of the pos-
itive definite energy function H to M and find the
supremum among the largest absolute values |xi |max of
the 2n-coordinates, such that for each of these terms,
hi (|xi |max) equals M . This supremum value gives us
R, which is the side length of the hypercube in 2n-
dimensional phase space. To find R, we adopt the fol-
lowing algorithm.

Step 1: Find the supremum Rv among the largest
absolute values of the n velocities. To this end, we

consider the kinetic energy terms T (q̇) of the energy
function H (7.18). When each kinetic energy term is
equated to M , out of all the n terms, the term with the
infimum mass mk,inf = inf {m1, m2, . . . , mn} gives
us the supremum velocity. Therefore, 1

2mk,inf q̇2k = M
yields

Rv = |q̇k | + εo = +
√

2M

mk,inf
+ εo, (7.19)

where εo > 0 is included, so that Rv is strictly greater
than the supremum |q̇k |.

Step 2: Find the supremum Rd among the largest
absolute values of the n displacements. Consider the
potential energy terms U (q) of the energy function H
(see Eq. 2.4). When the first term uo(q1) is equated to
M , for any given M > 0, there exist precisely two
real values r1, r2 ∈ R such that uo(r1) = M and
uo(r2) = M (see Fig. 2). This is because uo(q1) is pos-
itive definite and strictly radially increasing (see Sect.
2). Therefore, given an M , a bound on the maximum
value of |q1| is given by R1 = max {|r1| , |r2|} + ε1
where ε1 > 0.

Next, let us equate the second term of the potential
energy, u1(q2 − q1), to M . Again, since u1 is positive
definite and strictly radially increasing, for a given M ,
there exist precisely two real values r3, r4 such that
u1(r3) = M and u1(r4) = M . Therefore, given an
M , a bound on the maximum value of |q2| is given by
R2 = R1 + max {|r3| , |r4|} + ε2 where ε2 > 0. Con-
tinuing this recursive process, for the i th term, given
an M > 0, a bound on the maximum value of |qi | is
given by Ri = Ri−1 + max {|r2i−1| , |r2i |} + εi where
εi > 0 ∀ i, Ro = 0, and ui−1(r2i−1) = ui−1(r2i ) =
M for i = 1, 2, . . . n.

For a fixed–free lattice, there are only n potential
energy terms in the energy expression, and therefore,
the supremum among the n displacements is given by
Rd = Rn . On the other hand, for a fixed–fixed lattice,
there are (n + 1) terms, and equating the last term of
the energy expression un(−qn) to M yields yet another
estimate for a bound on the maximum value of |qn|.
Once again, since un is positive definite and strictly
radially increasing, for a given M , there exist precisely
two real values r2n+1, r2n+2 such that un(r2n+1) = M
and un(r2n+2) = M . Therefore, a second estimate for
a bound on the maximum value of |qn| is given by
R′
n = max {|r2n+1| , |r2n+2|} + εn+1, where εn+1 > 0.

Thus, for a fixed–fixed lattice, the supremum among
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the largest absolute values of the n displacements is
given by Rd = max

{
Rn, R′

n

}
.

Step 3: Therefore, given any M , a corresponding
bound on the side length R of the hypercube in 2n-
dimensional space is given by R = max{Rv, Rd} +
�, where � > 0. Clearly, for all ‖x‖∞ > R, we
have H(x) > M. Hence, the energy function H(x) is
radially unbounded.

Thus, by virtue of the result that we stated at the
beginning of this appendix, since H(x) is a radi-
ally unbounded function, it follows that the pre-image
H−1(K ) of every compact set K = [ε, c] ∈ R

+ is
compact in R

2n . But, H−1([ε, c]) is our set �, and
therefore, set � is compact in R2n .

Appendix 5: Actuator positions for which the only
invariant set of q̇C ≡ 0 is the origin

In this appendix, we want to show that under certain
choices of the actuator placements, the only invariant
set belonging to q̇C ≡ 0 is the origin (q ≡ q̇ ≡ 0). We
will show this to be true provided that one or more of
the following actuator configurations are adopted.

1. The first mass and/or the last mass in the lattice are
among the set of masses that are controlled.

2. A consecutive pair of masses in the lattice is among
the set of masses that are controlled, i.e., ix , iy ∈
SC , such that |ix − iy | = 1.

To ensure that the set defined by H(q, q̇) = H∗ is the
only globally attracting set in �, the invariant set(s)
satisfying q̇C ≡ 0 should lie outside �. But, by actu-
ating an arbitrary set of k masses out of n masses in
the lattice, one cannot always guarantee that this holds
true as is shown by the following example.

Consider a three-mass homogeneous Toda lattice
with fixed ends. The controlled (constrained) equations
of motion of the lattice with a single actuator placed at
the second mass of the lattice are given by

mq̈1 = a
[
eb(q2 − q1) − 1

]
− a

[
eb(q1) − 1

]
, (7.20)

mq̈2 = a
[
eb(q3 − q2) − 1

]
− a

[
eb(q2 − q1) − 1

]

−λo(H − H∗)mq̇2, (7.21)

mq̈3 = a
[
eb(−q3) − 1

]
− a

[
eb(q3 − q2) − 1

]
, (7.22)

Since the second mass alone is controlled SC = {2},
and when q̇C ≡ 0, we have q̇2 ≡ 0. Consequently,

q̈2 ≡ 0. This reduces Eq. (7.21) to

q3(t) − q2(t) = q2(t) − q1(t) (7.23)

Differentiating (7.23) with respect to time t and noting
that q̇2 ≡ 0, we obtain q̇3 = −q̇1. Consequently, q̈3 =
−q̈1. Solving this along with Eqs. (7.20) and (7.22)
yields q2 ≡ 0, and q1 ≡ −q3. Hence, there exist sets
of invariant orbits described by

Q = {(q1(t), q̇1(t), 0, 0,−q1(t),−q̇1(t))}
that satisfy q̇2 ≡ 0 and that lie inside the set �. And,
therefore, besides H(q, q̇) = H∗, there are additional
invariant sets in E (and hence in �) that satisfy q̇2 ≡ 0
and towhich the trajectories are confined. Thus, in such
a case, one cannot guarantee that the set H(q, q̇) = H∗
is globally attracting in �. To ensure that the sets of
invariant orbits satisfying q̇C ≡ 0 lie outside �, the
actuators must be placed appropriately, so that q̇C ≡ 0
only yields the set q ≡ q̇ ≡ 0 (origin O), which lies
outside �.

Actuator Positions Consider that the i th mass of the
Toda lattice is actuated. The constrained equation of
motion of the i th mass of the lattice can be explicitly
written down as

mi q̈i =ai
[
ebi (qi+1 − qi )−1

]
−ai−1

[
ebi−1(qi − qi−1)−1

]

−λo(H − H∗)mi q̇i (7.24)

Since the i th mass is controlled, i ∈ SC , and when
q̇C ≡ 0, we have q̇i ≡ 0. Consequently, q̈i ≡ 0. This
reduces Eq. (7.24) to

ai
[
ebi (qi+1 − qi ) − 1

]
= ai−1

[
ebi−1(qi − qi−1) − 1

]
.

(7.25)

Differentiating Eq. (7.25) with respect to time t , we
obtain

aibi e
bi (qi+1 − qi )(q̇i+1 − q̇i )

= ai−1bi−1e
bi−1(qi − qi−1)(q̇i − q̇i−1), (7.26)

which simplifies to

aibi e
bi (qi+1 − qi )(q̇i+1)

= ai−1bi−1e
bi−1(qi − qi−1)(−q̇i−1). (7.27)

Now, if we additionally have either q̇i−1 ≡ 0 or q̇i+1 ≡
0, then we obtain certain simplifying results. In the
present case, we derive our results assuming q̇i−1 ≡ 0,
but a similar derivation follows if q̇i+1 ≡ 0 instead. In
Eq. (7.27), if q̇i−1 ≡ 0, since aibi ebi (qi+1−qi ) > 0, it
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follows that q̇i+1 ≡ 0 (and hence q̈i+1 ≡ 0). Substitut-
ing this into the constrained equation of motion of the
(i + 1)th mass of the lattice gives us

ai+1

[
ebi+1(qi+2 − qi+1) − 1

]
= ai

[
ebi (qi+1 − qi ) − 1

]

(7.28)

Differentiating Eq. (7.28) with respect to time t gives
us

ai+1bi+1e
bi+1(qi+2 − qi+1)(q̇i+2 − q̇i+1)

= aibi e
bi (qi+1 − qi )(q̇i+1 − q̇i ), (7.29)

Again, since q̇i ≡ q̇i+1 ≡ 0, as before Eq. (7.29) yields
q̇i+2 ≡ 0 (and consequently q̈i+2 ≡ 0). Continuing this
process of recursive substitution into the constrained
equations of motion of the (i + 2)th mass, and then the
(i+3)th mass, and so on and so forth until the nth mass
of the lattice, we obtain

q̇k ≡ q̈k ≡ 0, k = i − 1, i, i + 1, i + 2, . . . n.

(7.30)

On the other hand, since q̇i−1 ≡ q̈i−1 ≡ 0, following
the steps in Eqs. (7.24–7.27) for the constrained equa-
tion of motion of the (i − 1)th mass of the lattice, we
obtain q̇i−2 ≡ 0 (and hence q̈i−2 ≡ 0). Continuing this
process of recursive substitution into the constrained
equations of motion of the (i − 2)th mass, and then the
(i − 3)th mass, and so on and so forth until the first
mass of the lattice, we obtain

q̇k ≡ q̈k ≡ 0, k = i, i − 1, i − 2, i − 3, . . . 1.

(7.31)

Thus, for a nonhomogeneous NDOF Toda lattice

1. If ix , iy ∈ SC , and |ix − iy | = 1, then whenever
q̇C ≡ 0, we have q̇ix ≡ q̇iy ≡ 0 with |ix − iy | = 1,
and for i = ix in Eqs. (7.24–7.31), we obtain q̇ ≡
q̈ ≡ 0.

2. For a fixed–fixed lattice, if we actuate the first mass
of the lattice, when q̇C ≡ 0, we have q̇1 ≡ 0, then
i = 1 in Eqs. (7.24–7.30) along with q̇o ≡ 0 yields
q̇ ≡ q̈ ≡ 0.On the other hand, if we actuate the last
mass of the lattice, when q̇C ≡ 0, we have q̇n ≡ 0,
then i = n in Eqs. (7.24–7.27, 7.31) along with
q̇n+1 ≡ 0 yields q̇ ≡ q̈ ≡ 0.

3. For a fixed–free lattice, actuating the first mass fol-
lows a derivation similar to the fixed–fixed case.
On the other hand, if we actuate the last mass of the
lattice, when q̇C ≡ 0, we have q̇n ≡ 0, then i = n
in Eqs. (7.24–7.27, 7.31) along with an = bn = 0
yields q̇ ≡ q̈ ≡ 0.

From Appendix II, we know that for a nonhomoge-
neous NDOF Toda lattice, if q̇ ≡ q̈ ≡ 0, then q ≡ 0.
Thus, for the three cases discussed above, it follows that
the origin O (q ≡ q̇ ≡ 0) is the only invariant point
satisfying q̇C ≡ 0. The set � has been constructed in
such a way that an open region around the origin O of
R
2n is excluded from�. Since the origin O lies outside

the set �, the largest invariant set in E (and hence �)
is the set defined by H(q, q̇) = H∗.
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